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Abstract--Fault slip distributions are commonly assumed to be symmetrical about a central slip maximum, 
however, slip distributions in nature are often asymmetric. Although slip along an idealized fault is expected to 
follow an elliptical distribution after a single slip event in an elastic material, the slip distribution may be modified 
if the fault propagates or if additional slip events occur. Analytically and numerically computed fanlt-slip 
distributions in an elastic medium indicate that: (1) changes in the (frictional) strength along a fault; (2) spatial 
gradients in the stress field; (3) inelastic deformation near fault terminations; and (4) variations of the elastic 
modulus of the host rock can cause strong deviations from idealized symmetrical distributions along single-slip 
event faults. A relatively stiff body adjacent to or cut by a fault will tend to reduce fault slip in its vicinity and tends 
to flatten the slip profile where it is cut by the fault. Sharp slip gradients develop near the interface between 
relatively soft and stiff materials. The interaction of faults within about one fault radius of one another can 
strongly influence slip gradients. Inelastic processes, caused by stress perturbations in the stepover region of 
echelon faults, may link individual segments and thereby create a slip distribution resembling that of a single 
fault. 

INTRODUCTION 

FAULT slip distributions play an important role in earth- 
quake studies, structural restorations of faulted terrain, 
and problems related to the flow of water or hydro- 
carbons in faulted reservoirs and aquifers. The distri- 
bution of slip along a fault depends on its geometry and 
that of neighboring structures, the remote boundary 
conditions and boundary conditions along the fault(s), 
and the constitutive behavior of the surrounding host 
rock. However, most studies of fault slip distributions 
neglect or greatly simplify the mechanical basis of this 
problem. Here we compute slip distributions for some- 
what more realistic geometries, materials, and boundary 
conditions in order to define first-order factors that can 
influence fault slip. 

Structural discontinuities, such as joints, dikes, solu- 
tion surfaces, and faults, separate points (e.g. P and Q 
that initially were arbitrarily close to one another) by the 
difference of the i r  individual displacement vectors 
(u[P], u[Q]). This difference is defined as the displace- 
ment discontinuity (Fig. la): 

D = u[P] - u[O]. 

The two planar surfaces that contain the displaced points 
are bounded in extent at a common periphery and can be 

idealized as a simple crack, for example in an elastic 
solid (Pollard & Segall 1987). 

In two dimensions the components of the displace- 
ment discontinuity are: 
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Fig. 1. Schematic illustration of a structural discontinuity. (a) The 
difference between displacement vectors of two originally neighboring 
points, u[P] - u[Q], serves to define the vector displacement disconti- 
nuity, D. (b) Displacement components on faces of a two-dimensional 

crack of half-length as shown in the initial state. 
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Fig. 2. (a) Schematic illustration of a three-dimensional fault with 
irregular periphery. The orientation of the slip vector is indicated by 
slickenlines or offset tinear markers; the slip magnitude can be deter- 
mined from offset linear or planar markers. (b) The quality of 
observed slip distributions along a fault trace depends strongly on the 
exposure, the number of markers, and the measurement method. 
Error bars indicate one standard deviation from mean value (circle). 

D x = u x ( I x l < - a , y = O  + ) - u x ( t x i < - a , y = O  ), 

Dy = Uy(IX I <- a, y = 0 +) - uy(ixt <- a, y = O- ). 

If the displacement components parallel to the frac- 
ture surface of length 2a are much larger then the out-of- 
plane displacement components (u~ >> uy and uz >> Uy), 
the resulting structural discontinuity is referred to as a 
faul t  and the in-plane displacement discontinuity is 
referred to as the slip. 

Relative motions of the opposing surfaces of a fault 
commonly include a small fault-perpendicular com- 
ponent, manifest in fault gouge zone formation and 
dilation or compaction features (Aydin 1978, Antonel- 
lini et al. 1994). This relative motion may play an 
important role in fault development and propagation, 
but is ignored here. 

Measurements of slip along the exposed trace of a 
fault usually provide limited information about the slip 
distribution over the three-dimensional fault surface 
(Fig. 2a). Only in a few cases, such as multiple exposures 
of faults on several mine levels (Rippon 1985) or the 
seismic imaging of many offset marker beds (e.g. Bar- 
nett et al. 1987, Bouvier et al. 1989, Chapman & 
Meneilly 1991, Watsh & Watterson 1991), can one 
determine the slip distribution over much of a fault 
plane. Linear geologic or cultural markers or planar 
offset markers Used in conjunction with slip direction 
indicators on the fault plane (Petit 1987), constrain the 

magnitude and orientation of the displacement disconti- 
nuity vector (Fig. 2a). 

Measurements of slip distributions depend on abun- 
dant displaced markers. When measuring slip gradients 
along recently active faults at the earth's surface, we rely 
on offset cultural features and geomorphic markers 
(Lawson 1908, Sieh 1978), and on displacements of 
geodetic bench marks (Thatcher & Lisowski 1987). 
Geophysicists can infer slip distributions in the subsur- 
face from teleseismic and strong motion measurements 
and from geodetic data (e.g. Archuleta 1984, Harris & 
Segall 1987, Wald et al. 1990, Beroza 1991). The pre- 
cision of slip measurements depend on the methods 
used, so the estimated precision should be shown with 
the measured values (Fig. 2b). 

During a single slip event, slip may occur along only 
part of a fault surface. We refer to the portion of a fault 
that slips during one slip event as a slip patch (Fig. 2a). 
Some slip patches may enlarge the fault surface by 
propagating into the previously unfaulted host rock. The 
slip distribution during a single event is related to vari- 
ous factors, including the slip-patch dimensions and 
shape of its periphery, stress perturbations due to pre- 
vious slip events, material properties of the host rock 
and fault zone, geometric irregularities along the fault. 
and the orientation of the measured transect relative to 
the fault service. These factors also influence the slip 
rates on creeping, or actively slipping faults (e.g. Li 
1987, Bilham &Bodin 1992). For example, Bilham and 
King (1989b) used numerical models to show that earth- 
quake slip is commonly reduced along oblique fault 
segments. 

Repeated ruptures o1 various slip patches produce the 
total slip distribution on a multi-event fault. This final 
slip distribution is affected not only by the parameters 
influencing slip during a single slip event, but also by 
additional factors, including temporal material and 
stress-field changes, the developmem of permanent 
strain in the host material, and the effects of fault growth 
(Muraoka & Kamata 1983, Rippon 1985. Higgs & Wil- 
liams 1987. Walsh & Watterson 1987, 1988, 1989, Cowie 
& Scholz 1992a). 

Most studies to date of slip distributions and the 
relationship between fault length and fault slip magni- 
tude assume simple models with isolated faults and 
homogeneous material properties and loading. For 
these models the maximum slip is in the middle of the 
fault, and decreases, according to a smooth function, to 
zero at the fault ends (e.g. Walsh & Watterson 1988, 
Cowie & Scholz 1992b). While some observed slip 
distributions can be roughly approximated by such 
models (Rippon 1985, Barnett et al. 1987. Dawers et al. 
1993) there are many asymmetric and complex examples 
that suggest further analysis (Rippon 1985, Peacock 
1991, Walsh & Watterson 1990, 1991. Dawers et al. 
1993 ). 

Somewhat more complex models were developed by 
Pollard and Muller f 1976] who used analytical solutions 
for an opening crack subject to linear stress gradients to 
explain the teardrop shape of some igneous dikes and 



Slip distribution on faults 1677 

sills. They pointed out that the commonly observed 
asymmetrical shapes of sheet intrusions may be related 
to: (1) regional stress gradients; (2) magma pressure 
gradients; (3) changes in host rock stiffness along the 
intrusions; and (4) the irregular three-dimensional 
geometry of intrusions. Delaney & Pollard (1981) used a 
numerical model to analyze the opening of echelon dike 
segments and showed how mechanical interaction 
among the segments could explain their shape. In this 
contribution we use analogous concepts for shearing 
cracks to analyze slip distributions along faults. 

Our results are based on analytical solutions using 
published stress functions (Tada etal. 1973) and numeri- 
cal boundary element models (Crouch & Starfield 1983). 
In particular we consider gradients of stress along a fault 
(due to variable friction or a spatially varying remote 
stress field) and inelastic secondary structures that may 
form due to stress perturbations at fault ends. We focus 
on the interaction of fault segments in an echelon 
arrangement and the effects of inelastic deformation at 
stepovers. We also examine how slip distributions can be 
affected by heterogeneity in the elastic modulus of a 
rock mass cut by a fault. Our goal is to show how these 
factors, in addition to probable effects of irregular three- 
dimensional fault shapes, can play a significant role in 
determining the slip distribution along faults. 

MEASURED SLIP DISTRIBUTIONS AND 
ELEMENTARY MODELS 

Single-slip-event fault displacements 

Measured slip distributions of single-slip earthquake 
events typically are complex (Fig. 3). These distri- 
butions commonly show multiple maxima, asymmetric 
slip distributions, changes in slip vector orientation, and 
irregular gradients (e.g. Lawson 1908, Sieh 1978, 
Archuleta 1984, Rymer 1989, Wald et al. 1990, Beroza 
1991). Some complexity in slip distributions can be 
correlated to fault geometry, in which individual fault 
segments are often arranged in an echelon fashion, with 
associated conjugate faults and fault steps and bends at 
all scales (Tschalenko 1970, Vedder & Wallace 1970, 
Wallace 1973, Bilham & King 1989a,b, Bilham & Bodin 
1992). For example, the slip distribution determined for 
the 1987 Superstition Hills earthquake sequence 
(Rymer 1989, Wald et al. 1990) shows the effects of 
stress field perturbations from a previous rupture and 
the interaction of two echelon fault segments (Fig. 3). 

One of the most elementary models of a single slip 
event on a fault predicts an elliptical slip distribution in a 
linear elastic, homogeneous, isotropic, and isothermal 
material (Pollard & Segall 1987). This two-dimensional 
model assumes that the regional stress field is uniform, 
that shear tractions on the fault surfaces are constant, 
and that no fault propagation occurs. 

The displacement discontinuity (slip) along such a 
model fault (Fig. 4a inset) may be derived utilizing 
Westergaard's (1939) simplification of Muskhelishvili's 
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Fig. 3. (a) Slip distribution from single-slip events measured along the 
1987 Superstition Hills earthquake rupture (SSH) at the earth's 
surface immediately following (squares) and two years after (triangles) 
the earthquake (after Rymer 1989). Aseismic shallow afterslip 
approximately doubled the original surficial offsets to roughly match 
the magnitude of slip at depth. (ER--Eimore Ranch fault.) (b) The 
slip distribution of the 1987 Superstition Hills earthquake determined 
from seismologic strong motion data (after Wald et al. 1990), slip 
contours are in centimeters. Three slip events can be distinguished. 
Only the third broke the whole length of the fault, about 8 s after the 
first event that may have ruptured in response to a previous event on 
the left-lateral Elmore Ranch fault, oriented perpendicular to the 
Superstition Hills fault which occurred about 11 h earlier (Fig. 3a 
inset). The final rupture of the two major fault segments initiated at the 
NW-fault termination and resulted in a slip distribution with two 

distinctive peaks. 

general solution for an elliptical cavity in an infinite 
elastic body (Muskhelishvili 1954, pp. 347-358). The 
method uses functions of a complex variable (z = x + iy) 
to find an analytical stress function Z(z)  that satisfies the 
equilibrium and compatibility equations and stress- 
strain relations for a linear elastic material, as well as the 
boundary conditions of a given problem. Using the 
appropriate Westergaard stress function one can calcu- 
late the stress and displacement fields in the body sur- 
rounding a crack (Tada et al. 1973). For example, the 
two-dimensional, plane strain displacement com- 
ponents in the (x, y)-plane for any loading that produces 
a displacement discontinuity in the ux-component across 
the crack are: 

Ux = ~ [2(1 - v) Im Z, + Re Z] (la) 

Uy = ~G [ - (1  - 2v) Re 2 - y Im Z], (lb) 

where the model fault occupies a straight segment on the 
x-axis from x = - a  to x = +a (Fig. 4a inset), G is the 
shear modulus, v is Poisson's ratio, Z = (d/dz)Z,  and Im 
and Re refer to the imaginary and real parts of these 
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Fig. 4. (a) The analytically (solid curve) and numerically (squares) computed displacement discontinuity D along an 
isolated fault in an infinite body after a unit shear-stress drop. The boundary element numerical model consists of 100 
uniform slip elements with prescribed stress boundary condition. Inset shows boundary conditions and geometry for a 
crack, the model fault surface, in an elastic, isotropic, and homogeneous material. The coordinates are aligned with the 
crack and the origin is at the crack center: Distance, x, along the fault trace is normalized by fault half-length, a. (b) Effects 
of a linear stress distribution along a model fault. Plot of normalized slip vs normalized distance using equation (8). The 
parameter Sgt2S r controls the relative magnitudes of the linear and uniform stresses loading the model fault. For comparison 

we plot the numerical (small squares) solution for SJ2Sr = 0.5, Boundary conditions are shown in the inset. 

functions, respectively (Tada et al. 1973, p. 1.23). Such a 
case corresponds to the mode-II classification of fracture 
mechanics (Lawn & Wilshaw 1975, p. 52) where the 
relative motion is in the crack plane and perpendicular 
to the crack periphery. 

In the case of an applied uniform remote shear stress 
O#xy and no tractions on the crack faces the stress function 
is: 

r 

o~y (2) Z ( z )  = 

where a is the crack half length (Westergaard 1939). The 
displacement component on the upper crack face ([xl -< 
a, y = 0 +) is found from equation ( la)  to be 

(1 - v ) I m  2 .  (3)  
u x -  G 

Substituting equation (2) into equation (3) we find: 

u,(lxl < a,  y = 0 +)  = ~ x  (1 - v)  ~ / ~ - _  x •. (4)  
- -  . " G " 

On the opposite crack face u~ is equal in magnitude but 
opposite in sign, thus producing a displacement disconti- 
nuity, D given by twice the value of Ux in equation (4). A 

positive ~ x  produces right-lateral slip on the model 
fault. 

For a uniform shear traction acting on the crack face in 
the x-direction and no stress in the remote field, the 
displacement component,  ux, on the crack face is of the 
same form as equation (4). However,  if this shear 
traction induces a positive shear stress, ~x,  the model 
fault slips in a left-lateral sense (Fig. 4a, inset). Thus the 
displacement discontinuity (slip) along a single fault of 
length 2a with a uniform traction on the faces of magni- 

r • tude ~ x  and a uniform remote stress Oy x is 

Ox = 2(@x - ow)" (1 - v) .  V ' ~ - -  x-, (5) 
G 

where (@x - Oyx) is the constant shear-stress drop along 
the model fault (Fig. 4a). A positive Dx refers to a 
right-lateral sense of slip. The displacement disconti- 
nuity in the y-orientation (mode-I opening or interpen- 
etration of the crack walls) and in the z-orientation 
(mode-III sliding) are zero. 

From equation (5) the slip magnitude follows an 
elliptical distribution and is linearly proportional to the 
length of the fault and to the shear-stress drop. The slip 
is inversely proportional to the elastic shear modulus. 
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The maximum displacement discontinuity occurs at the 
center of the model fault and goes to zero at the ends 
(Fig. 4a). Following the result in equation (5), we 
normalize all the plotted slip distributions for our 
models by the maximum for this base case, where 

Dx(x = 0; Gx = 0) = Dx(norm) = 2(~x) a. 

In the case of a three-dimensional fault the slip distri- 
bution has an elliptical form if the fault has an elliptical 
periphery and one of the axes is parallel to the direction 
of shear-stress drop (Eshelby 1957); 

~ _  x 2 z 2 Dx=8b ( ~ x - ~ x ) . ( . ( l  y-v-).l • 1 ~ - ~ - ( 6 )  
:r Y ~ G ( 2 - v ) /  

The displacement discontinuity in the z-direction, D z is 
zero [here z refers to the other co-ordinate in the crack 
plane (Fig. 2a), and has no relation to the complex z]. 
Faults of a more complex shape, or elliptical faults 
whose axes are oriented oblique to the shear stress drop, 
will have more complex slip distributions. The simple 
two- and three-dimensional models provide a standard 
against which more complex cases can be judged. We 
will restrict our attention to two-dimensional plane- 
strain examples, 

Fault slip results in stress concentrations around the 
fault termination. The stress intensity factors Kt, Ku, 
and Kui represent the strength of the stress field sur- 
rounding a crack tip in opening, in-plane shearing, and 
tearing displacement discontinuity modes, respectively 
(Lawn & Wilshaw 1975, p. 51). The stress intensity 
factors are proportional to the applied stresses and are 
determined by the stress boundary conditions and the 
geometry of a given problem. Only if all three stress 
intensity factors are zero do we not find a stress singular- 
ity at a crack tip. If any stress intensity factors are not 
zero, the stress concentration may cause the material to 
fail inelastically and allow the crack to propagate. The 
stress intensity factor for the elementary two- 
dimensional fault model is 

Kil = ~YyxV~a. (7) 

Cumulative fault displacements 
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Fig. 5. Cumulative slip distributions measured along faults exposed in 
mines or along outcrops that provide abundant offset markers. (a) 
Normalized slip (open circles,/)max = 65 mm) along two right stepping 
left-lateral strike-slip faults (inset) near Kirkcudbright, Scotland (after 
Peacock 1991). Note the high slip gradient where the two fault 
segments interact. The step is contained in a shale bed. Shown for 
comparison is a model of fault interaction and inelastic deformation 
near fault discontinuities. Inelastic deformation in the fault step, and 
frictional end zones near the distal fault ends provide a good model fit. 
(b) Normalized slip distribution along a normal fault (open circles, 
Dmax = 86 ram) cutting across layered Quaternary sediments near 
Kyushu, Japan (after Muraoka & Kamata 1983). The slip along the 
normal fault drops sharply proceeding down dip from the siltstone to 
the sandstone. Shown for comparison are a model where the sandstone 
has a Young's modulus five times of that of the host rock (triangles) 
and a model of increased frictional resistance of the fault segment in 
the sandstone bed (squares). (c) Contoured three-dimensional distri- 
bution of vertical displacements derived from measured offsets of coal 
and sandstone beds on several levels of a mine in northeast Derbyshire 
(after Rippon 1985). The normal fault steepens from about 40 ° at its 
center to 60 ° near its lower termination. The down-dip slip distribution 
along this fault may be influenced by down-dip and lateral steepening, 

effects of changing host rock properties, and fault segmentation. 

Measured cumulative slip distributions along faults 
often are distinctly non-elliptical and consequently a 
number of researchers have developed fault models to 
explain and categorize such distributions (Muraoka & 
Kamata 1983, Higgs & Williams 1987, Walsh & Watter- 
son 1987, 1988, 1989, Peacock 1991, Cowie & Scholz 
1992a). Non-elliptical slip distributions have been 
attributed to the effects of fault growth and appear to be 
affected by lithologic variations (Figs. 5a & b), fault 
interaction (Fig. 5a), and bends along the fault trace 
(Fig. 5c) (Muraoka & Kamata 1983, Rippon 1985, 
Peacock 1991, Walsh & Watterson 1990, 1991, Cowie & 
Scholz 1992a). 

One class of modifications to the elementary elastic 
models (Fig. 4a), motivated by non-elliptical slip distri- 
butions, involves the introduction of fault propagation 
with each slip event (Watterson 1986, Walsh & Watter- 
son 1987, Cowie & Scholz 1992a). Modeled slip in a 
single event increases linearly with fault length 
(equation 5). If the whole growing fault slips during each 
event, the cumulative slip distribution can be considered 
to be made up of the sum of individual, elliptical, 
distributions at each growth stage (Watterson 1986). 
This implies that stress perturbations resulting from slip 
relax by permanent straining between each slip event. 
The form of the resultant slip distribution depends on 
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the size of the fault growth increments (Watterson 1986. 
Walsh & Watterson 1987, Cowie & Scholz 1992a,b, 
Gillespie et al. 1992) and is symmetric. 

SLIP D I S T R I B U T I O N S  O N  SIN G L E  F A U L T S  
W I T H  N O N - U N I F O R M  S T R E S S  D R O P S  

One mechanism which may cause deviations from the 
simple model of slip distribution is related to non- 
uniform stress drop along faults. This may be the result 
of a non-uniform remote stress field or the result of 
varying frictional resistance or cohesion. Here we use 
analytical slip distributions from linear stress-drop dis- 
tributions along faults, distributions modified by the 
effects of increased frictional resistance near fault ter- 
minations, and distributions caused by a linear increase 
of frictional resistance from the fault center. 

Linear stress distributions along single faults 

We analyze the influence of non-uniform loading on 
slip distributions by imposing spatially varying stress 
boundary conditions in the remote field or along a fault. 
Spatially variable stress fields on all scales are likely the 
norm, rather than the exception, in actively deforming 
tectonic settings (e.g. Zoback & Zoback 1991, Reasen- 
berg & Simpson 1992). First we analyze the effects of a 
linear stress distribution along a fault. This may approxi- 
mate conditions where a fault has propagated through 
materials of varying coefficient of friction. In the remote 
field Oy~ (x, y ~ o0) = const. = Sr and on the fault 
surfaces the traction varies linearly such that the stress is 

(Ixl < a, y = 0+)  = Sg (x/a). 
The slip distribution is: 

A linear distribution of the shear traction on the fault 
provides resistance to slip along one side (x > 0) and 
enhances slip on the other side (x < 0) relative to the 
base case of a uniform stress drop. This results in a 
skewed or tear-drop slip distribution with the maximum 
slip centered off the middle of the fault (Fig. 4b). As the 
ratio Sg/2Sr increases from 0 to 1 the asymmetry in slip 
becomes more pronounced. In the limiting case for 
right-lateral slip where Sg/2Sr = 1 the slip asymptotically 
approaches zero at x = +a.  For greater values of the 
ratio, the right-hand side of the model fault slips in a left- 
lateral (negative) sense. It is worth noting that the mode 
II stress intensity is 

g n  ..-_ (S r -I- ~Sg)~v/~a, x =-+_a. 

The stress singularity at (x = +a)  disappears (Kil = 0) in 
the limiting case where Sg/2S~ = 1. We will return to this 
phenomenon after introducing the end zone models. 

Non-linear stress distributions: an end zone model  

Non-uniform or non-linearly varying remote shear 
stress distributions or changes in frictional strength 
along faults may occur in particular tectonic settings or 
may be caused by particular mechanisms for fault propa- 
gation and frictional resistance to slip. It has been 
suggested that, as a fault propagates through previously 
intact soil or rock, a particular section of the fault will 
develop from an immature zone of relatively great 
strength (or friction) at the fault termination to a well- 
developed fault zone of lower strength (Ida 1972. 
Palmer & Rice 1973. Rudnicki 1980. Li 1987). More 
recently, Cowie & Scholz (1992b) have adopted these 
concepts in discussions of slip distributions on faults. 

The increased resistance to slip may be related to 
inelastic deformation in a volume of rock surrounding 
the fault termination (Cowie & Scholz 1992b) or to 
greater friction between fault surfaces because of micro- 
structural processes (Palmer & Rice 1973) and geometri- 
cal irregularities of the fault surfaces. In any case, the 
increased resistance at fault terminations leads to slip 
distributions that show more tapering near the fault 
terminations than predicted for a uniform stress drop 
(Fig. 4a). 

We consider a simple end-zone fault model with 
uniform remote shear stress, dy x, uniform shear stress. 
O~yx, over the central portion of the fault, and end zones 
with uniform shear stress, Cryx, (Fig. 6a. inset). Cowie & 
Scholz (1992b) studied a similar distribution of normal 
stresses using the Barenblatt (1962) opening-mode 
equations as an analogue for faults. We compute the 
effects of the non-uniform loading on fault patches using 
Westergaard stress functions from Tada et at. (1973, p. 
5.11). Because the linear-elastic stress fields and the 
related stress functions are additive, solutions for the 
different loading configurations are superimposed. The 
displacement discontinuities for the three different ap- 
plied shear stresses are: 

Case 1. Stress-free crack of length 2a under remote 
uniform loading, ~.x = St: 

Dx = 2Sr" (1 - v_))k/a2--~-X2 ' (9 3 
G 

Case 2. Uniform stress of magnitude Cry] = S m along 
the central portion of the fault ( - d  -< x -< +d,  Fig. 6a 
inset); 

D.~ = 
2(1 - v) 

~ Sm 

[alx - al j  

× + (d + x) cosh-l /a ,  2 + dx.l 
[aJx + dlJ 

+ 2 sin ll"d\" 

(lo) 
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Case 3. Uniform stress of magnitude ~yx = S~ along 
two end zones (d < Ix[ -< a) at either end; 

DX ~" 
2(1 - v) Sc 

X + ( d -  x )cosh- l /a7  + d~c.,l 
talx  + al l  

+ 2{2 - s in -~(d ) ]vTx77e  

(11) 

Adding the three terms we find 

Dx - 2(1 - v) 
G 

× 

{'SrS ' 
+ cos -i(f + #/  

1 j \alx -t- all I 

j 
(12) 

This rather complex distribution reduces to the expected 
end-members. For example, as d --+ a, Dx reduces to 
equation (5) with a uniform stress drop of (Sr - Sm), and 
as d --+ 0, D x reduces to equation (5) with a uniform 
stress drop of (S~ - Sc). In general, the slip distribution 
depends on the three stress magnitudes and on the 
length of the end zone (Figs. 6a & b). 

Of particular interest are cases where the stress con- 
centration near the fault termination is finite; that is, the 
stress intensity factor Ku --- 0 (Rudnicki 1980). Adding 
the stress intensity factors given by Tada et al. (1973) for 
the three cases described above, we find that K n = 0 if 

S r - S c _  2 sin-,(d). 
Sm ~ S~ 

(13) 

This provides the relation among the three shear stresses 
and the geometric parameters of the fault for a fault 
growth criterion Kit > 0. For example, assuming S m ] S  r = 

0 and SdSr = 1.5, the geometry d/a = 0.5 corresponds to 
a zero slope in the slip distribution at the terminations 
and yields the condition K u = 0. 

A special case stems from the work on cohesive  end 
zones near the terminations of opening-mode cracks by 
Barenblatt (1962) and on plastic end zones for opening 
cracks by Dugdale (1960). By analogy to their results, 

certain distributions of shear stress in the cohesive zone 
of a shearing-mode crack will oppose the action of the 
remotely applied load so as to eliminate the stress 
singularity at the model fault termination. For these 
cases the stress intensity factor Kn is zero (Rudnicki 
1980). The criterion originally proposed by Barenblatt 
(1962) for opening-mode cracks specifies KI is zero. 

If a volume of rock surrounding the fault termination 
experiences inelastic deformation and it is small com- 
pared to the volume in which the stress would be 
approximated by the so-called near-tip field, the prin- 
ciples of linear elastic fracture mechanics (LEFM) apply 
(Kanninen & Popelar 1985, p. 146). The near-tip field is 
a good approximation for the elastic stress within a 
radius r of a fracture tip if r < 0.01 a (Pollard & Segall 
1987, p. 342). Under these limiting conditions of smal l  
scale yielding it is meaningful to consider a propagation 
criterion based on the stress intensity factor and to 
calculate slip distributions using a purely elastic solu- 
tion. The tapered portion of the slip distribution would 
be confined to very near the terminations of the fault. 
On the other hand, if the greater resistance to slip is 
provided by friction on the fault, there is no limit to the 
size of the surface so affected and the tapering could 
extend to the fault center. 

Li (1987, pp. 383-389), Rudnicki (1980, p. 498), and 
Martel & Pollard (1989) discuss some theoretical and 
experimental constraints on the length of the end zone, 
but there are few good constraints on what the length of 
an end zone for a natural fault might be, or what an 
appropriate stress distribution along a developing fault 
might be. Cowie & Scholz (1992a) propose a model 
wherein the normalized length of the end zone (a-d) /a  is 
constant as a fault grows. This implies that a critical 
displacement is required to weaken the breakdown zone 
which scales with the dimension of the fault. 

A symmetr i c  linear stress distribution 

Increased strength or friction along a fault may be 
limited to a small zone near the fault terminations or 
may decrease more gradually towards the region of 
greater displacement near the fault center. To remain in 
the context of our models this shear strength must not be 
exceeded except within the fault itself so the surround- 
ing material is elastic. We examine the possible effects of 
gradual changes in the resistance to slip towards the fault 
ends using the Westergaard function for a symmetric 
linear stress distribution (Tada et al. 1973, p. 5.14). In 
the remote field @x (x, y--+ ~)  = const. = Sr, and @x (Ixl 
<- a, y = 0 +-) = Sg(Ixl/a) on the fault surfaces. The 
displacement discontinuity is given by: 

Dx - (1 G- v) 2[SrV,-,.aVZ~ 

a \xj/] 
(14) 
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Fig. 6. Effects of non-linear stress distributions along a model fault with a weak center portion and stronger end zones. (a) 
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the displacement curve at the fault termination for S¢/Sr = 2.44 corresponds to the KII = 0 condition given in equation (13). 
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d/a -< 1. (c) Effects of linear symmetric stress distributions along a model fault: Normalized slip distributions for a range of 
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Sg/~S~ > 0.5, slip ~11 be left-lateral near the fault terminations; if Sg/~S~ < 0 slip is enhanced towards the fault ends. 

The m o d e  II stress intensity factor is: 

So the condit ion of  Barenblatt,  KIt = 0, is obtained at 
both terminations when 

S_~ 1 (16) 
JrSr 2 

If Cry x (x = + a. y = 0 +) = Sg is a measure o f  the shear 

strength of  the fault near its termination, then the fault 
will propagate when Sr -> (2/~)Sg maintaining K H = 0. 
The resulting modif ied slip distribution is shown as one  
of  the curves in Fig. 6(c). This slip distribution shows a 
reduction of  the maximum slip magnitude ( - 5 0 %  of  the 
complete  stress-drop model ,  Sg = 0) and a more linear 
(tapered) decrease towards the fault terminations,  end- 
ing in a zero slope. Model  faults such as those shown in 
Fig. 6 may explain the tapered form of  slip observed 
along some natural faults (e.g.  Watsh & Watterson 1987, 
1989). 
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EFFECTS OF INELASTIC STRAIN AT FAULT 
ENDS, FAULT INTERACTION, AND HOST 

ROCK HETEROGENEITY ON SLIP 
DISTRIBUTIONS 

We utilize the boundary element method (Crouch & 
Starfield 1983) to study the displacement distributions 
on faults under boundary conditions that are more 
complex than those described in the previous section. 
The program Frac2D (Thomas & Pollard 1993) allows us 
to study the plane, elastostatic stress and displacement 
fields about any number  of fractures with varying loads 
and geometries. By imposing varying stress boundary 
conditions along the faults we can analyze the effects of 
variations in strength (friction or cohesion) along a fault. 
The addition of a second fault allows us to study the 
effects of mechanical interaction on slip distributions. 

We test the accuracy of the numerical solution method 
through a comparison with the analytical results in Figs. 
4 and 6. In each figure, the unbroken line represents the 
analytical solution, whereas the individual points are the 
numerical results computed for similar boundary con- 
ditions. Slip distributions in the numerical models very 
closely follow the analytical results. 

Effects o f  inelastic deformation at fault ends 

Commonly,  stress concentrations at fault termin- 
ations favor the development of secondary structures: 
opening cracks, veins and normal faults in the extension- 
al quadrant (Erdogan & Sih 1963, Nemat-Nasser & 
Horii 1982, Segall & Pollard 1983, Granier  1985, Deng et 
al. 1986, Petit & Barquins 1988, Martel et al. 1988, 
Barquins & Petit 1992), and pressure solution seams, 
thrust faults, folds, and ductile fabrics in the contraction- 
al quadrant (Fletcher & Pollard 1981, Deng et al. 1986, 
Biirgmann & Pollard 1992). 

Opening-mode fracture growth is introduced with a 
fracture criterion at the model fault terminations (e.g. 
Lawn & Wilshaw 1975). These cracks are prescribed to 
grow by a small increment (0.002 a) if the mode I stress 
intensity factor, K~, exceeds the critical stress intensity 
factor Kic = 1.5 MPa m u2 (Atkinson & Meredith 1987, 
p. 492). 

With increasing splay-crack length, slip magnitude on 
the fault increases and the slip gradient near the fault 
terminations decreases (Fig. 7a). The slip magnitude on 
boundary elements near the fault termination is approxi- 
mately equal to the opening displacement on the bound- 
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Fig. 8. (a) Contoureddistributionofthe fault-parallel shear stress, Oyx,about a slipped fault. (b) Slip distribution along the 
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ary elements near the base of the splay crack. The 
maximum slip magnitude near the center of the fault 
increases approximately linearly with splay crack length 
(Fig. 7b). 

This analysis illustrates how inelastic deformation 
near fault terminations, due to opening fractures in- 
crease the slip magnitude along a fault and decrease the 
gradient in slip elsewhere along the fault. Furthermore. 
slip is not constrained to zero at the fault termination, if 
it is coupled to the inelastic deformation such as splay 
crack opening. If such inelastic deformation were to 
occur near one fault termination only, a highly asymmet- 
ric slip distribution would result. 

Fault interaction across echelon steps 

Faults are typically composed of individual fault seg- 
ments in a left- or right-stepping echelon geometry 
(Wallace 1973, Crowell 1974, Segall & Pollard 1980. 
Christie-Blick & Biddle 1985, Aydin & Schultz 1990). 
The interaction of individual fault segments in an eche- 
lon arrangement leads to characteristic stress fields and 
resulting deformation patterns, depending on the left- or 
right-stepping character of fault stepovers for a given 
sense of shear (Rodgers 1980, Segall & Pollard 1980. 
Bilham & King 1989a, Aydin & Schultz 1990. Bfirgmann 
& Pollard 1992). Here we analyze the effects of fault 

interaction across simple echelon fault steps on the slip 
distribution. 

We model the slip distribution along two stress-free, 
frictionless faults; that is. fault strength is not dependent 
on the fault-normal stress. We illustrate the effects of 
fault interaction by calculating the slip distribution along 
two straight parallel faults of varying overlap and separ- 
ation. 

The fault segments interact by modifying the local 
stress field. Where the stress perturbation from slip on 
one fault (Fig. 8a) increases or decreases the shear 
stress. Oyx, on its neighbor, the tendency will be to 
enhance or reduce slip in that region. The slip distri- 
butions will be the same for left- and right-stepping 
geometries due to the symmetric nature of the shear 
stress field. 

The interaction of the echelon fault segments can 
cause asymmetric slip distributions along the faults, and 
the maximum slip magnitude may increase or decrease 
compared to that for the single fault model. The slip 
distribution depends on the amount of overlap of the 
two fault segments and their separation. With zero 
overlap, the slip magnitude on the individual faults 
decreases with increasing separation and the locus of 
maximum slip shifts toward the segment centers (Fig. 
8b). Models of the effects of varying overlap (not shown) 
indicate that slip along the step-bounding fault segments 
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is reduced due to a stress shadowing effect if overlap is 
large. However, if faults overlap by only a small fraction 
of their length, or if they underlap, slip is increased at 
small separations. 

In the previous discussion we neglected the effects of 
non-uniform fault-normal stresses due to mechanical 
interaction. Figure 9(a) shows the contoured magnitude 
of the fault-normal stress, Oyy, about a single right- 
lateral fault with the same boundary conditions as in the 
previous model. In a right-stepping arrangement the 
adjacent fault will be exposed to fault-normal tensile stress 
near the overlapping region. If faulting is frictional, the 
reduced fault-normal compressive stress will reduce 
frictional stress and increase slip (Segall & Pollard 1980, 
Aydin & Schultz 1990). The opposite is to be expected 
for the left-stepping geometry where the end zones of 

the overlapping faults reside in a zone of increased 
fault-normal compression (shaded zones in Fig. 9a). 

We apply a Coulomb failure condition to the faults, 
~x =/* Cryy, with a coefficient of friction/, of 0.6. Where 
fault-normal compressive stress is increased, slip will be 
reduced. With a step geometry of 0. la overlap and 0. la 
separation we find that friction causes a reduction of slip 
along the step bounding fault segments about left steps 
and an increase of slip about right steps (Fig. 9b). 
However, the slip distributions are not greatly different 
from the frictionless case. These different situations 
probably would be difficult to distinguish using slip data 
from real faults. 

Where two strike-slip fault segments are arranged in 
an echelon geometry, stress perturbations may favor 
the development of inelastic deformation around the 
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stepover (Segali & Pollard 1980, Sibson 1986, Gamond 
1987, Aydin & Schultz 1990, B/irgmann & Pollard 
1993). We investigate the effects of inelastic defor- 
mation at fault steps by allowing opening fractures to 
grow from the echelon fault ends of a fight step be- 
tween two right-lateral fault segments (Fig. 9c). If the 
opening cracks propagate across the step, they effec- 
tively link the segments, and transfer slip. We find that 
the slip distribution along the faults approaches that of 
a single fault of the combined length of the two seg- 
ments as the open fractures approach linkage. Simi- 
larly, mass solution transfer out of contractional fault 
steps through the development of pressure solution 
seams (Gamond 1987) or pressure-enhanced ductile 
strain accommodation in steps allows the effective 
transfer of displacement between echelon faults (BOrg- 
mann & Pollard 1994). 

Figure 5(a) shows an example of strongly asymmetric 
slip distributions along echelon faults near Kirkcud- 
bright, Scotland that were mapped by Peacock (1991) in 
comparison with results from an elastic model of two 
right-stepping, left-lateral echelon faults with strong end 
zones and inelastic deformation in the stepover region. 
To account for ductile flow in a shale layer that encloses 
the fault stepover (Fig. 5a, inset) we include a fault- 
perpendicular anticrack (Fletcher & Pollard 1981) be- 
tween the two model faults. Interpenetration of the 
anticrack walls represents inelastic strain accommo- 
dation in the step. Furthermore, we introduce two 
strong end zones at the distal fault terminations where 
O~v ~ = 1.5 a~,~, to model the effects of lateral fault growth 
that may have caused the tapered slip distribution. The 
model (Fig. 5a, filled circles) correctly predicts the 
relative slip magnitudes, however, the mechanisms used 
here are not unique. Independent evidence for their 
application to these data is needed to make this a 
convincing explanation. 

Effects of  changes in elastic moduli on slip distributions 

We now address how heterogeneity in one elastic 
parameter, the Young's modulus of the rock, can affect 
slip along a fault. We focus on the influence of a single 
inclusion of different moduli on a single fault in an 
otherwise homogeneous and infinite body. The in- 
clusion could represent, for example, an igneous body or 
a sedimentary unit that is more or less stiff than the 
surrounding rock. The model fault lies along the x-axis 
and has a unit half-length, whereas the inclusions are 
rectangular, of finite size, and have edges parallel to the 
x- and y-axes (Fig. 10a, inset). 

We examine three different geometries (see insets in 
Fig. 10): (1) the fault is completely outside but termin- 
ates at the boundary of the inclusion; (2) the fault cuts 
across the inclusion and terminates in the surrounding 
rock; and (3) the fault cuts to the center of the inclusion. 
For each geometry we present results of trials where, E*/ 
E, the ratio of the Young's modulus in the inclusion to 
that in the host material, was set to 0.1,0.5, 1,2, and 10. 
Poisson's ratio is 0 for both the inclusion and the host. 

The fault is divided into a series of 40 contiguous 
elements of equal length. The fault sustains no shear 
stress and is subject to a uniform remote unit shear stress 
dy x = 1 MPa, whereas tT~_ x and O~,y are zero. With these 
boundary conditions and geometries, the fault walls do 
not interpenetrate or open. Two coincident contours 
define the interface between the inclusion and the host 
material. One contour bounds the exterior of the in- 
clusion, whereas the second marks an interior boundary 
of the host material. Each contour is divided into a series 
of boundary elements. The solution technique requires 
that diSplacements as well as normal and shear tractions 
be continuous across the two interface contours. To 
ensure that smooth slip distributions are obtained along 
the fault, the interface boundary elements in the vicinity 
of the fault are slightly shorter than the elements on the 
fault itself. 

The normalized slip is plotted vs the normalized 
position along the fault in Fig. 10. The case, E*/E -- 1, a 
homogeneous body, serves as a reference. Five effects of 
material heterogeneity stand out clearly in these figures, 
the first being especially central to the main theme of this 
paper: 

(1) The slip distribution can be significantly distorted 
from a symmetric elliptical profile if Young's modulus 
varies near the fault by more than a factor of two. The 
distortion increases as the disparity between the modu- 
lus of the host and the inclusion increases. Depending on 
the location of the inclusion, the profile can be smooth 
and tear,drop shaped (Fig. 10a), symmetrical but non- 
elliptical (Fig. 10b), or asymmetric and irregular (Fig. 
10c). For inclusions with a low modulus near the termi- 
nation of a fault, the maximum slip is shifted towards the 
inclusion (Fig. 10a). Note that a non-symmetric and 
non-elliptical slip distribution may result even if an 
inclusion were merely near a fault; material heterogen- 
cities need not be visible along a fault to affect the slip 
distribution. 

(2) The amount of slip increases everywhere along a 
fault if the inclusion is softer (lower Young's modulus) 
than the host, but decreases if the inclusion is stiffer than 
the host. Changes in slip from the reference (homogene- 
ous) case are most pronounced near the inclusion and 
decrease with distance from it. Accordingly, the effects 
are most pronounced if and where part of the fault is in 
contact with an inclusion. Soft inclusions cut by faults 
induce larger effects than stiff ones. For example, in Fig. 
10(b), a 10-fold decrease of inclusion modulus relative to 
the host results in a maximum slip value of about 3.5 
times that of the reference case, whereas a 10-fold 
increase of inclusion modulus leads to a decrease in 
maximum slip to only 0.6 times the reference case. 

(3) For very stiff inclusions the slip profile will be 
nearly fiat along the part of the fault in contact with the 
inclusion. A very stiff inclusion essentially will be dis- 
placed as a rigid body and will deform relatively little 
internally. 

(4) Sharp gradients in slip can develop along a fault 
near the interface between the host and the inclusion, 
with the gradient increasing as the difference in modulus 
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in the inclusion to that in the host (E*/E) range from 0.1 to 10. (b) Slip distributions for a fault that cuts an inclusion (see 
inset). Ratios of Young's modulus in the inclusion to that in the host (E*IE) range from 0.1 to 10. (c) Slip distributions for a 
fault that is partly enclosed within a rectangular inclusion (see inset). Ratios of Young's modulus in the inclusion to that in 

the host (E*IE) range from 0.1 to I0. 
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increases. In contrast, for faults subject to uniform 
driving stresses in homogeneous materials, sharp gradi- 
ents in slip would occur only near the fault ends (Fig. 
4a). If moduli along a fault were sufficiently different, 
the attendant slip gradients could become steep enough 
that dilatant splay fractures form near the interface; such 
fractures typically are restricted to near the ends of 
isolated faults in relatively homogeneous materials 
(Segall & Pollard 1983, Martel et al. 1988). 

(5) The slip profiles for the heterogeneous bodies 
studied here are convex everywhere except in the im- 
mediate vicinity of a material interface (Fig. 10). In 
contrast, for non-uniform driving stress the profiles may 
be convex along some portions of the fault but concave 
elsewhere (Figs. 4b and 6). The sense of curvature along 
a slip profile perhaps could offer a way to distinguish 
causes for non-elliptic slip distributions. 

Muraoka and Kamata (1983) speculated that changes 

in competence of the host rock may influence the slip 
distribution of faults breaking through various sedimen- 
tary rock types. The less competent (in its current state) 
sandstone in Fig. 5(b) is thought to reduce fault slip by 
ductile drag (Muraoka & Kamata 1983). Alternatively, 
a reduction of slip would be expected if the sandstone 
were stiffer. Our modeling (Fig. 5b, triangles) shows 
that the slip distribution could be roughly approximated 
if the Young's modulus of the sandstone were about five 
times greater than that of the siltstone. Such a ratio is not 
unreasonable given the elastic values for sandstone and 
shale in the technical literature (e.g. Hatheway & 
Kiersch 1990). 

Another possible explanation is that the sandstone 
had a greater frictional resistance to slip. We can model 
these conditions by applying a slip retarding shear stress 
boundary condition on the fault segment in the sand- 
stone. The modeled slip distribution (Fig. 5b, squares) 
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closely matches the observed slip (Fig. 5b, open circles). 
Based on the sense of curvature of the profile in the 
sandstone, the slip profile of Muraoka & Kamata (1983) 
is fit better by a model with heterogeneous strength on 
the fault than by a model with heterogeneous materials 
and a constant stress drop. However, without further 
testing of the constitutive and frictional properties of the 
host rock we are not able to definitively discriminate 
between the different explanations. 

DISCUSSION AND CONCLUSIONS 

We have identified and quantified several factors that 
influence the slip distributions along faults. Our model 
results show that deviations from an idealized symmetri- 
cal and elliptical slip distribution are caused by stress 
gradients, heterogeneous elastic properties, inelastic 
deformation processes, and mechanical interaction be- 
tween adjacent fault segments. Some of these factors can 
be recognized in previously published examples of slip 
distributions (e.g. Muraoka & Kamata 1983, Walsh & 
Watterson 1990, Peacock 1991, Scholz et al. 1993). 

As faults propagate through previously intact rock, the 
resistance to slip near the fault periphery may be greater 
than that near the mature center. Similarly, if the friction 
changes with slip magnitude along a fault, this non- 
uniform resistance influences the slip distribution. 
Tapered slip distributions toward fault tips have been 
cited as evidence for inelastic deformation during fault 
growth (Cowie & Scholz 1992b. Scholz et al. 1993l. but 
such distributions can be produced in purely elastic 
models with non-uniform loading. Tapered slip distri- 
butions also have been cited as evidence for fault propa- 
gation with a plastic yield zone and finite tip stresses (the 
so-called Dugdale-Barenblatt model). However. this 
model requires that the derivative of slip with respect to 
position along the fault goes to zero at the tip. Published 
field data do not define slip distributions well enough near 
fault tips to make conclusive statements about these 
models (e.g. Dawers et al. 1993. Scholz et al. I993). 

If stress concentrattons near fault terminattons 
induced permanent deformation in the host rock, the 
development of secondary structures (fractures, folds 
and fabric) will cause further deviations from slip distri- 
butions derived from simple models. Some faults are 
part of a larger fault zone and are expected to strongly 
influence slip distributions of their nearest neighbors 
because of perturbations of the local stress field. Single 
fault segments may be effectively linked by secondary 
structures in the stepover region. Faults in hetero- 
geneous host rocks such as normal faults in stratified 
rocks will show localized slip maxima in softer units. 
Even if the fault does not cut through a nearby body of 
different elastic modulus, its slip distribution will be 
affected. Clearly ~1 is important to analyze slip distri- 
butions in the context of a fault's three-dimensional 
geometry, its relationship to nearby structures, the 
constitutive behavior of the host rock, and the develop- 
ment of secondary structures. Documentation of this 

context requires detailed mapping of the fault(s) and the 
surrounding rock. 

Recently, attention has focused on scaling laws relat- 
ing slip magnitude to the dimension of a fault and related 
fault growth models (e.g. Walsh & Watterson 1988, 
Cowie & Scholz 1992a, Scholz et al. 1993). Fault slip 
distributions from a variety of tectonic and geologic 
settings commonly are represented by points on log-log 
plots of maximum slip vs fault trace length. Such rep- 
resentations may be useful from some standpoints, but 
they fail to shed light on (and tend to divert attention 
from) a host of key issues relevant to understanding and 
predicting the slip behavior of faults. Our results suggest 
that more detailed field descriptions, maps, and analyses 
of more realistic slip distributions are needed to address 
the scaling laws for faulting. 

Acknowledgements--This research was supported by the Rock Frac- 
ture Project of Stanford University and NSF grant EAR-9017909. 
John Walsh, Chris Scholz and Associate Editor Jim Evans provided 
very helpful reviews. David Pollard would like to thank David Peacock 
and Patience Cowie for interesting discussions that helped focus his 
attention on these problems. Also, he would like to thank the organ- 
izers of  the 17th Funga! Genetics Conference (Asilomar,  CA,  March 
1993) for providing an appropriate place to study the Wcstergaard 
stress functions. 

REFERENCES 

Antonellini. M A.,  Aydin.  A. & Pollard. D. 1994. Microstructure or 
deformation bands in porous sandstones at Arches National Park. 
Utah.  J. Struct. Geol. 16 q7), 941-959 

Archuleta.  R. 1984. A faulting model for the 1979 Imperial Valley 
earthquake,  J. geophys. Res. 89.4559-4585. 

Atkinson B. K, & Meredith.  P. G. 1987. Experimental tracture 
mechanics data for rocks and minerals. In: Fracture Mechanics o]I 
Rock (edited by Atkinson B. KA. Academic Press Inc. London.  
477-525. 

Aydin.  A. 1978 Small faults formed as deformation bands m sand- 
stone. Pure & Appl. Geophys. 116, 913-930. 

Aydin.  A. & Schultz. R. A~ 1991). Effect of mechanical  inte racuon on 
the development  of  strike-slip faults with echelon patterns.  J. Strttct, 
Geol. 12. 123-129. 

Barenblatt ,  G. 1. 1962. The mathematical  theory of equilibrium cracks 
in brittle fracture. Adv. Appl. Mech. 7.55-125.  

Barnett .  J. A M.. Mortimer.  J.. Rippon. J H.. Walsh. J. J & 
Watterson.  J. 1987. Displacement geometry in the volume contain- 
ing a single normal  fault Bull. Am. Ass. Petrol. Geol. 71. 925-937. 

Barquins. M. & Petit, J. P. 1992. Kinetic instabilities during the 
propagation of a branch crack: effects of the loading condit ions and 
internal pressure. J. Struct. Geol. 14. 893-903. 

Beroza. G. C. 1991. Near-source modeling of the Loma Prieta 
earthquake: evidence for heterogeneous slip and implications for 
ear thquake hazard. Bull. seism. Soc. Am. 81. 1603-1621. 

Bilham, R. & Bodin, P. 1992. Fault zone connectivity: Slip rates on 
faults in the San Francisco Bay area, California. Science 258. 281- 
284. 

Bilham. R. & King, G. C~ P. 1989a. The morphology of strike-slip 
faults: examples from the San Andreas  fault. California. J. geophys. 
Res. 94. 10204-10216. 

Bilham. R. & King, G. C P 1989b. Slip distribution on oblique 
segments  of  the San Andreas  fault_ California: Observations and 
theory. Open File Rep. U.S. geol. Surv. 89-315.80-93. 

Bouvier. J. D. .  Kaars-Sijpesteijn. C. H..  Kluesner,  D. F,. Onyejekwe. 
C. C. & van der Pal. R. C. 1989. Three-dimensional  seismic 
interpretation and fault scaling investigations. Nun River Field. 
Nigeria. Bull. Am. Ass'. Petrol. Geol. 73. 1397-1414. 

Bfirgmann. R. & Pollard. D. D. 1992 Influence of the state of stress 
on the brittle-ductile transition in granitic rock: evidence from fault 
steps in the Sierra Nevada. California. Geology 20. 645-648. 



Slip distribution on faults 1689 

Biirgmann, R. & Pollard, D. D. 1994. Strain accommodation about 
strike-slip fault discontinuities in granite rock under brittle-to- 
ductile conditions. J. Struct. Geol. 12, 1655-1674. 

Chapman, T. J. & Meneilly, A. W. 1991. The displacement patterns 
associated with a reverse-reactivated, normal growth fault. In: The 
Geometry of Normal Faults (edited by Roberts, A. M., Yielding, G. 
& Freeman, B.). Spec. Publ. geol. Soc. Lond. 56, 183-191. 

Christie-Blick, N. & Biddle, K. T. 1985. Deformation and basin 
formation along strike-slip faults. In: Strike-slip Deformation, Basin 
Formation, and Sedimentation, Spec. Publ., 37 (edited by Biddle, K. 
T. & Christie-Blick, N.). Society of Economic Paleontologists and 
Mineralogists, Tulsa, Okla, 1-34. 

Cowie, P. A. & Scholz, C. H. 1992a. Growth of faults by accumulation 
of seismic slip. J. geophys. Res. 97, 11085-11095. 

Cowie, P. A. & Scholz, C. H. 1992b. Physical explanation for the 
displacement-length relationship of faults using a post-yield frac- 
ture mechanics model. J. Struct. Geol. 14, 1133-1148. 

Crouch, S. L. & Starfield, A. M. 1983. Boundary Element Methods in 
Solid Mechanics. Unwin Hyman, London. 

Crowell, J. C. 1974. Sedimentation along the San Andreas fault, 
California. In: Modern and Ancient Geosynclinal Sedimentation 
(edited by Dott, R. H. & Shaver, R. H.). Spec. Pubis Soc. econ. 
Paleont. Miner. 19,292-303. 

Dawers, N. H., Anders, M. H. & Sholz, C. H. 1993. Growth of normal 
faults: Displacement-length scaling. Geology 21, 1107-1110. 

Delaney, P. T. & Pollard, D. D. 1981. Deformation of host rocks and 
flow of magma during growth of minette dikes and breccia-beating 
intrusions near Ship Rock, New Mexico. Prof. Pap. U. S. geol. Surv. 
1202. 

Deng, Q., Wu, D., Zhang, P. & C h e n ,  S. 1986. Structure and 
deformational character of strike-slip fault zones. Pure & Appl. 
Geophys. 124, 203-224. 

Dugdale, D. S. 1960. Yielding of steel sheets containing slits. J. Mech. 
Phys. Solids 8, 100-104. 

Erdogan, F. & Sih, G. C. 1963. On the crack extension in plates under 
plane loading and transverse shear. J. Basic Engin. 519-527. 

Eshelby, J. D. 1957. The determinations of the elastic field of an 
ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. 
A241, 376-396. 

Fletcher, R. & Pollard, D. D. 1981. An anticrack mechanism for 
stylolites. Geology 9,419--424. 

Gamond, J. F. 1987. Bridge structures as sense of displacement 
criteria in brittle fault zones. J. Struct. Geol. 9,609-620. 

Gillespie, P. A., Walsh, J. J. & Watterson, J. 1992. Limitations of 
dimension and displacement data from single faults and the conse- 
quences for data analysis and interpretation. J. Struct. Geol. 14, 
1157-1172. 

Granier, T. 1985. Origin, damping and pattern of development of 
faults in granite. Tectonics 4, 721-737. 

Harris, R. & Segall, P. 1987. Detection of a locked zone at depth on 
the Parkfield, California segment of the San Andreas fault. J. 
geophys. Res. 92, 7945-7962. 

Hatheway, A. W. & Kiersch, G. A. 1990. Engineering properties of 
rock. In: Physical Properties of Rocks and Minerals (edited by 
Carmichael, R. S.). CRC Press Boca Raton, Florida, 671-715. 

Higgs, W. G. & Williams, G. D. 1987. Displacement efficiency of 
faults and fractures. J. Struct. Geol. 9, 371-374. 

Ida, Y. 1972. Cohesive force across the tip of a longitudinal-shear 
crack and Griffith's specific surface energy. J. geophys. Res. 77, 
3796-3805. 

Kanninen, M. F. & Popelar, C. H. 1985. Advanced Fracture Mech- 
anics. Oxford University Press, New York. 

Lawn, B. R. & Wilshaw, T. R. 1975. Fracture of Brittle Solids. 
Cambridge University Press, Cambridge. 

Lawson, J. J. 1908. The California earthquake of 18 April 1906: 
Report of the State Earthquake Investigation Commission. Carne- 
gie Institution of Washington Publication 87. 

Li, V. C. 1987. Mechanics of shear rupture applied to earthquake 
zones. In: Fracture Mechanics of Rock (edited by Atkinson, B. K.). 
Academic Press Inc. London, 351-428. 

Martel, S. J. & Pollard, D. D. 1989. Mechanics of slip and fracture 
along small faults and simple strike-slip fault zones in granitic rock. 
J. geophys. Res. 94, 9417-9428. 

Martel, S. J., Pollard, D. D. & Segall, P. 1988. Development of simple 
strike-slip fault zones in granitic rock, Mount Abbot quadrangle, 
Sierra Nevada, California. Bull. geol. Soc. Am. 99, 1451-1465. 

Muraoka, H. & Kamata, H. 1983. Displacement distribution along 
minor fault traces. J. Struct. Geol. 5,483-495. 

Muskhelishvili, N. E. 1954. Some Basic Problems of the Mathematical 
Theory of Elasticity. P. Noordhof, Leyden, Netherlands. 
16:17.4 

Nemat-Nasser, S. & Horii, H. 1982. Compression-induced nonplanar 
crack extension with application to splitting, exfoliation, and rock- 
burst. J. geophys. Res. 87, 6805--6821. 

Palmer, A. C. & Rice, J. R. 1973. The growth of slip surfaces in the 
progressive failure of overconsolidated clay. Proc. R. Soc. Lond. 
A332, 527-548. 

Peacock, D. C. P. 1991. Displacements and segment linkage in strike- 
slip fault zones. J. Struct. Geol. 13, 1025-1035. 

Petit, J. P. 1987. Criteria for the sense of movement on fault surfaces in 
brittle rock. J. Struct. Geol. 9, 597-608. 

Petit, J. P. & Barquins, M. 1988. Can natural faults propagate under 
mode II conditions? Tectonics 7, 1243-1256. 

Pollard, D. D. & Muller, O. H. 1976. The effect of gradients in 
regional stress and magma pressure on the form of sheet intrusions 
in cross-section. J. geophys. Res. 81,975-984. 

Pollard, D. D. & Segall, P. 1987. Theoretical displacements and 
stresses near fractures in rocks: With applications to faults, joints, 
veins, dikes, and solution surfaces. In: Fracture Mechanics of Rock 
(edited by Atkinson, B. K.). Academic Press Inc., London, 277-349. 

Reasenberg, P. A. & Simpson, R. W. 1992. Response of regional 
seismicity to the static stress change produced by the Loma Prieta 
earthquake. Science 255, 1687-1690. 

Rippon, J. H. 1985. Contoured patterns of the throw and hade of 
normal faults in the Coal Measures (Westphalian) of north-east 
Derbyshire. Proc. Yorks. geol. Soc. 45,147-161. 

Rodgers, D. A. 1980. Analysis of pull-apart basin development 
produced by en 6chelon strike-slip faults. In: Sedimentation in 
Oblique-slip Mobile Zones (edited by Bailance, P. F. & Reading, H. 
G.). Spec. Publ. Int. Assoc. Sedimentol. 4, 27-41. 

Rudnicki, J. W. 1980. Fracture mechanics applied to the Earth's crust. 
Ann. Rev. Earth & Planet. Sci. 8, 489-525. 

Rymer, M. J. 1989. Surface rupture in a fault stepover on the 
Superstition Hills fault, California. In: Fault Segmentation and 
Controls of Rupture Initiation and Termination (edited by Schwartz, 
D. P. & Sibson, R. H.). U.S. Geol. Surv. Open-File Report 89-315, 
309--323. 

Scholz, C. H., Dawers, N. H., Yu, J. Z. & Anders, M. H. 1993. Fault 
growth and fault scaling laws: Preliminary results. J. geophys. Res. 
98, 21,951-21,961. 

Segall, P. & Pollard, D. D. 1980. Mechanics of discontinuous faults. J. 
geophys. Res. 85, 4337-4350. 

Segall, P. & Pollard, D. D. 1983. Nucleation and growth of strike-slip 
faults in granite. J. geophys. Res. 88,555-568. 

Sibson, R. H. 1986. Rupture interaction with fault jogs. In: Earth- 
quake Source Mechanics, A GU Geophysical Monograph (edited by 
Das, S., Boatwright, J. & Scholz, C.). American Geophysical 
Union 37, Washington, D. C., 157-168. 

Sieh, K. 1978. Slip along the San Andreas fault associated with the 
great 1857 earthquake. Bull. seism. Soc. Am. 68, 1421-1428. 

Tada, H., Paris, P. C. & Irwin, G. R. 1973. The Stress Analysis of  
Cracks Handbook. Del Research Corporation, Hellertown, Penn- 
sylvania. 

Thatcher, W. & Lisowski, M. 1987. Long-term seismic potential of the 
San Andreas fault southeast of San Francisco, California. J. geo- 
phys. Res. 92, 4771-4784. 

Thomas, A. L. & Pollard, D. D. 1993. The geometry of echelon 
fractures in rock: Implications from laboratory and numerical ex- 
periments. J. Struct. Geol. 15,323-334. 

Tschalenko, J. S. 1970. Similarities between shear zones of different 
magnitudes. Bull. geol. Soc. Am. 81, 1625-1640. 

Vedder, J. G. & Wallace, R. E. 1970. Map showing recently active 
breaks along the San Andreas and related faults between Cholame 
Valley and Tejon Pass, California. U.S. Geol. Surv. Misc. Field 
lnvestig. Map 1-574. 

Wald, D. J., Helmberger, D. V. & Hartzell, S. H. 1990. Rupture 
process of the 1987 Superstition Hills earthquake from the inversion 
of strong-motion data. Bull. seism. Soc. Am. 80, 1079-1098. 

Wallace, R. E. 1973. Surface fracture patterns along the San Andreas 
Fault. In: Conference on Tectonic Problems of the San Andreas Fault 
System, Proceedings (edited by Kovach, R. L. & Nur, A.). Stanford 
University Publications, Geol. Sci. 13,248-250. 

Walsh, J. J. & Watterson, J. 1987. Distribution of cumulative displace- 
ment and of seismic slip on a single normal fault surface. J. Struct. 
Geol. 9, 1039-1046. 

Walsh, J. J. & Watterson, J. 1988. Analysis of the relationship 
between displacements and dimensions of faults. J. Struct. Geol. 10, 
239-247. 

Walsh, J. J. & Watterson, J. 1989. Displacement gradients on fault 
surfaces. J. Struct. Geol. 11,307-316. 



1690 R .  BURGMANN, D .  D .  POLLARD a n d  S. J. MARTH, 

Walsh, J. J. & Watterson, J. 1990. New methods of fault projection for 
coalmine planning. Proc. Yorks. geol. Soc. 48,209-219. 

Walsh, J. J. & Watterson, J. 1991. Geometric and kinematic coher- 
ence and scale effects in normal fault systems. In: The Geometry of 
Normal Faults (edited by Roberts, A. M., Yielding, G. & Freeman, 
B.). Spec. Pubis geol. Soc. Lond. 56, 193-203. 

Watterson, J. 1986. Fault dimensions, displacements and growth. Pure 
& Appl. Geophys. 124, 365-373. 

Westergaard, H. M. 1939. Bearing pressures and cracks~ J. Appl. 
Mech. 66, A49-A53. 

Zoback, M. D. & Zoback, M. L. 1991. Tectonic stress field of North 
America and relative plate motions. In: Neotectonics of North 
America, The Decade of North American Geology Project Series 
(edited by Slemmons. D. B., Engdahl, E. R., Zoback, M. D. 
& Blackwell, D. DA. Geol. Soc. Am. Boulder, Colorado, 339- 
366. 


